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Recurrent biological neural networks: The weak and noisy limit
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A perturbative method is developed for calculating the effects of recurrent synaptic interactions between
neurons embedded in a network. A series expansion is constructed that converges for networks with noisy
membrane potential and weak synaptic connectivity. The terms of the series can be interpreted as loops of
interactions between neurons, so the technique is called a loop expansion. A diagrammatic method is intro-
duced that allows for construction of analytic expressions for the parameter dependencies of the spike-
probability function and correlation functions. An analytic expression is obtained to predict the effect of the
surrounding network on a neuron during an intracellular current injection. The analytic results are compared
with simulations to test the range of their validity and significant effects of the the recurrent connections in
network are accurately predicted by the loop expansion.
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I. INTRODUCTION

Recurrent connectivity is a ubiquitous feature of biolo
cal neural networks, particularly in the central nervous s
tem of vertebrates. This recurrent structure has made m
ematical analysis difficult because of the nonlinearities t
arise when the action of a particular neuron affects its
through its action on neighboring neurons@1#. In addition,
interpretation of electrophysiological data can be mislead
because the activity of neighboring neurons to the record
site are typically affected by the experimental stimu
@2–5#.

Mathematical methods that can quantify the effects
neighboring neurons on the response of a single neuron
bedded in a network would greatly improve the predictio
of neural network models and ease the comparison w
system-level electrophysiological recordings. The devel
ment of theoretical methodology has led to the study of i
alized systems such as syn-fire chains@6#, networks with
correlated inputs@7,8#, and large networks of identical neu
rons @9,10#. The goal of this project is to develop analyt
methods to improve quantitative tests of electrophysiolog
hypotheses in order to set stricter limits on our theories
brain function.

Quantitative tests require mathematical methods
separate different dynamic modes and can be refined to
namics of the particular system of interest. We shall sepa
the dynamical modes of recurrence intocoherentand asyn-
chronousmodes@11,12#. The coherent mode is characteriz
by strong synaptic connections that cause the activity of
neuron to dramatically affect the activity of another. Th
dynamical mode is essential to central pattern generator
simple example is the half-center oscillator, consisting o
pair of symmetrically coupled neurons that are stron
coupled by inhibitory synaptic currents. When one neu
fires, the other neuron is silent. If each neuron expres
intrinsic conductances to terminate a burst, and to ind
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firing once they are released from inhibition, then the ne
ronal pair will oscillate. The coherent mode is quantified
the correlation function that is nearly61, for synaptic cou-
plings that are either excitatory (11) or inhibitory (21).

The present article investigates the effects of recurrenc
the asynchronous state when the joint-correlation betw
neurons is small but does not vanish. We quantify the pa
metric dependence of neural-response variables in the a
chronous state on the synaptic strength, the spike probab
and the presence of noise in the system. We also show
the influence of neurons on their neighbor can be consid
able in the asynchronous state, suggesting that such co
tions should be included in our predictions about the res
of physiological experiments, even when no coherent s
dynamics are obvious.

Another interesting result found in this analysis is th
under physiological conditions found in the vertebrate c
tral nervous system, the effects of recurrent connectiv
propagates across few synaptic contacts. Thus, if distanc
measured by the number of synaptic junctions separa
neurons, effects of distant neurons can be safely neglecte
models of biological neural networks. Thus, large-sc
simulations of biological neural networks could be simplifi
to smaller networks that produce quantitatively similar
sults.

In the following two sections, we introduce our neur
modeling methods and establish our notation. The follow
section investigates the effects of recurrence on the sim
model of a pair of neurons. We show how to calculate
correction to the spike probability and membrane poten
due to recurrent synaptic connections. The method consi
recurrent connections as a perturbation to the backgro
activity of the mean-field result@13#. The terms of the per-
turbation series are weighted by powers of the syna
strength multiplied by the inverse of the noise in the syste
Thus, the perturbation expansion converges quickly for s
tems that are noisy and weakly coupled.

We compare the results of the perturbation expansion
numerical simulations to test the validity of the method a
quantify the limits of this approach. Other experimenta
measurable quantities are also calculated: the response
©2004 The American Physical Society10-1
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PATRICK D. ROBERTS PHYSICAL REVIEW E69, 031910 ~2004!
stimulus, the autocorrelation function, and the join
correlation function. Section III generalizes our perturbat
method to systems with many neurons and shows that in
asynchronous mode, only close neighbors contribute sig
cantly. The final section discusses the applications of th
analytic methods to biological systems.

A. Network of spike-response neurons

The model neurons used in this study are based on
spike-response model@14#. The basic idea is to construct
kernel function that describes the response of a biolog
neuron to spikes. The membrane time constant and o
intrinsic properties of neurons are contained in the respo
function @15#. In the following, we restrict the model to re
spond linearly to presynaptic spikes with a simple expon
tial decay represented by thepostsynaptic-potential (PSP
kernel, e(t). If tpre is the time of the presynaptic spike, the
e(t)5aexp@2a(t2tpre)# for t>tpre , otherwisee(t)50. The
parametera is used to describe the membrane time const
and the kernel is normalized such that*e(t)dt51. This
choice of kernel implies that the model is formally equiv
lent @16# to integrate-and-fire models@17,18#. These kernels
could also contain a synaptic delay, but in the examples
will assume that the delay is negligible.

Spikes are generated in each model neuroni by a prob-
ability function, Pi(t), which is dependent on a variab
called themembrane potential Vi(t). The membrane poten
tial is the sum of all synaptic inputs. It is convenient
construct our probability function in discrete time where,tn
5nnt, nPZ andnt is on the order of 1 ms. The probabilit
of a spike generated in neuroni during time steptn is given
by a threshold function of the membrane potential,

Pi~ tn!5Pi„Vi~ tn!…5
1

11exp@2m i„Vi~ tn!2u i…#
, ~1!

whereu i is the spike threshold andm i parametrizes the nois
(m i; 1/noise! of neuroni. The noise arises from ion chann
fluctuations that are internal to each neuron, and from s
aptic noise that arises from synaptic connections not exp
itly included in the model.

A presynaptic spike evoked by another neuronj will con-
tribute to the membrane potentialVi(tn) with a PSP kernel
weighted by the synaptic weightwi j . In addition to synaptic
input, the membrane potential of neuroni is also given a bias
~or background input! Ui(tn), which provides a spontaneou
discharge rate or driving input to the neuroni. If Sj

pre(tm)
represents a spike train@Sj

pre(tm)51 or 0 at each time step#
from neuronj, then the membrane potential of neuroni is

Vi~ tn!5Ui~ tn!1(
m, j

wi j e~ tn2tm!Sj
pre~ tm!. ~2!

The j sum is over all neurons that have synaptic contact o
neuroni. To compute the ensemble average of the membr
potential, we use the probability functions of the presynap
neurons,
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^Vi~ tn!&5Ui~ tn!1(
m, j

wi j e~ tn2tm!Pj~ tm! ~3!

becausePj (tm)5^Sj
pre(tm)&. Since the spike probability o

neuronj is functionally dependent on the spike probability
neuron i, via its membrane potential, then in recurrent c
cuits Vi(tn) will appear nonlinearly on both sides of th
equation and we must seek alternative methods to solve
it.

B. Fixed-point behavior and time scales

The neurons of neural systems have been found to h
preferred spike rates due to adaptive mechanisms that d
these systems to these rates and help maintain stability o
overall system@19,20# . Both theoretical@21–23# and experi-
mental studies@19# have suggested that the establishment
a fixed point in the neural dynamics is on a time scale tha
much longer than the dynamics driven by spike respon
The presence of a fixed point allows one to choose a m
membrane potential to expand the probability function in E
~1!. Let p̂ be the stable fixed point of the long time sca
dynamics:

Pi~ tn!→ p̂i5Pi~V̂i ! as tn→`. ~4!

By expanding the probability function about this fixed poin
we can extract a linear relation to expose the membra
potential function on the right-hand side of Eq.~3!

Pj~ tn!5 p̂ j1m j~ p̂ j2 p̂ j
2!~Vj~ tn!2V̂j !1•••, ~5!

whereV̂j is the membrane potential at the fixed point. In t
following, we will assume that the system is near the fix
point p̂ that is independent of time. This assumption w
simplify the analysis and, in one example, we will allow th
background inputUi(tn) to vary in time.

In the following section we will pursue this expansion b
simplifying our network to the case with only two synap
cally coupled neurons to illustrate the method. However,
technique generalizes to networks of multiple neurons as
be shown in Sec. III.

II. PAIR OF COUPLED NEURONS

Let wi j P R be the weight~efficacy! of a synaptic connec-
tion from neuronj onto neuroni. For our two-neuron net-
work, let Ui(tn) be the background membrane potential
neuroni, the membrane potential in the absence of syna
connections with neuronj. Here, the symbolsi andj are fixed
labels for each of the two neurons so that we may ea
generalize the method to larger networks in the followi
sections. The ensemble average membrane potential of
ron i is given by Eq.~3!. However, sincePj (tm) is dependent
on the activity of neuroni due to the recurrent synaptic con
nection, we must expand about the background membr
potential of neuronj as in Eq.~5!. The membrane potentia
of neuronj is also dependent on the spike activity of neur
i, so that we now have
0-2
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RECURRENT BIOLOGICAL NEURAL NETWORKS: THE . . . PHYSICAL REVIEW E 69, 031910 ~2004!
^Vi~ tn!&5Ui~ tn!1wi j p̂je* @11m~12 p̂ j !~U j~ tm!2V̂j !#

1mwi j p̂j~12 p̂ j !wji e
(2)* Pi~ tn!, ~6!

where we have introduced the notation for the multip
convolutions,e (K)* f (tn) 5 ( i 1

•••( i K
e(t i K21

2t i K
)•••e(tn

2t i 1
) f (t i 1

). The last term in Eq.~6! represents the recurren

effects of neuronsi ’s activity on itself via neuronj. Expand-
ing the spike-probability function of neuroni, Pi(tn), gener-
ates another term with a factor that contains the sp
probability function of neuronj.

For simplicity, let p̂i5 p̂ j5 p̂, m i5m j5m, u i5u j5u,
and collect the terms in powers of the synaptic weight,wi j
5wji 5w, to arrive at an expression for the average me
brane potential,

^Vi~ tn!&5Ui~ tn!1wp̂(
K51

`

„wm p̂~12 p̂!…K21

3@11m~12 p̂!e (K)* „Ua~ tn!2V̂a…#, ~7!

where

a5H i if K is even

j if K is odd J . ~8!

We now have an expression that is dependent on the b
ground activity of either neuron, that is, we may calculate
effect of the recurrent connections on any specific neuro
an accuracy of the order ofwm p̂(12 p̂).

The spike probability can also be expressed as a po
series by substituting the expansion of the average m
brane potential@Eq. ~7!# back into the expression for th
spike probability function Eq.~5!,

FIG. 1. Loop expansion. Each term in the series expansion
two coupled neurons@Eq. ~9!# is represented by a diagram of recu
rent loops withK synaptic links.
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Pi~ tn!5 (
K50

`

~wm p̂~12 p̂!!Ke (K)* Pa
U~ tn!, ~9!

where Pa
U(tn)5Pa„Ua(tn)… is the background spike prob

ability of neurona, and we have definede (0)(tn)5d(tn).
Note that the fixed-pointp̂ is still present in this expression
If the expansion were taken about the background sp
probability, the expression is the same unless the backgro
spike probability is not constant.

For a sensible prediction of the spike probability functio
the expansion must be bounded on the interval@0,1#. Be-
cause the expansion parameter,wm p̂(12 p̂), is dependent on
the noise and synaptic weight, we must investigate the c
ditions for convergence of this series. The product,p̂(1
2 p̂)<0.25 for all p̂, so the important parameters for co
vergence are the noise parameter and synaptic weight. S
m is small for noisy networks, andw is small for weakly
coupled networks, then the perturbation series converge
the weak and noisy limit of these network parameters p
vided thate (K)* Pa

U(tn) is bounded asK→`.

A. Diagrammatic methods

The expressions for the spike-probability function and a
erage membrane potential can become unwieldy when m
synaptic connections are involved with different weights a
different neuronal types. Therefore, we introduce a bo
keeping device based on Feynman-like diagrams that
help keep track of the terms of the expansion@24,25#.

A chain of synaptic linksis the number of synaptic con
nections that a signal passes from the starting neuron to
final neuron. For instance, in our example of the pair
coupled neurons, the second term in Fig. 1 is a chain o
synaptic link, the third term is a chain of two synaptic link
Each unique chain of synaptic links contributes a term to
perturbation expansion.

For a chain ofK synaptic links,
1→2→••• i→ j→•••K→K11,

the influence of the first neuron in the chain on the sp
probability of neuron (K11) is given by a term containing

r

lity. The
n
ng

r

FIG. 2. Comparison of the loop-expansion prediction with simulation for the synaptic weight dependence of the spike probabi
time average of the spike-probability function~solid line! saturates for strong synaptic weights~error bars represent 1 standard deviatio!.
The loop-expansion prediction~dashed lines! for K terms of the expansion@Eq. ~9!# matches the simulation result in the presence of stro
effects on the spike probability from recurrent connections. Background input is set to the threshold,Ui(tn)5U j (tn)5u, the noise paramete
is m50.002, and the number of time steps for each simulation isN523106.
0-3
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FIG. 3. Comparison of the loop-expansion prediction with simulation for the synaptic weight dependence of the average me
potential loop expansion during a pulsed, intracellular simulation. The time average of the membrane potential~solid line! during a repeated
step change of the background input by 20% of the baseline membrane potential~error bars represent 1 standard deviation!. The loop-
expansion prediction~dashed lines! for K terms of the expansion@Eq. ~9!# matches the simulation for weak synaptic weights. Parameters
as in Fig. 2 except the number of time steps for each simulation isN523105.
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~1! wji m j p̂ j (12 p̂ j ) for eachsynaptic link, i→ j ,

~2! e (K)* P1
U(tn),

where 1 is the label of the first neuron in the synaptic cha
The perturbation expansion for the average membrane

tential is handled similarly. For a chain ofK synaptic links,
1→2→••• i→ j→•••K→K11,

the influence of the first neuron in the chain on the me
brane potential of neuron (K11) if given by a term contain-
ing the following factors:

~1! wji p̂i for eachsynaptic link, i→ j ,
~2! m i(12 p̂i) for eachtraverse, → i→,
~3! e (K)* @11m(12 p̂1)(U1(tn)2V̂1)#.
The resultant perturbation series, called a loop expans

approximates the effects of neighboring neurons by expa
ing in the order of loops. Figure 1 shows the graphical r
resentation of the first four terms of Eq.~9!. The first term is
the background spike probability and the second term re
sents the effect of the second neuron on the first if there w
no recurrent connections. The third term is then the effec
the first neuron on itself via its effect on the second neur
This technique generalizes to any number of neurons w
unique synaptic weights, intrinsic noise and backgrou
spike probability. Analytic methods using another type
converging series have been developed previously to s
population dynamics of large networks@26#.

B. Numerical comparison

We wish to check the range of validity of our loop expa
sion of our model network by comparing the parameter
pendency of the loop expansions with a numerical simula
of a pair of coupled neurons@48#. In our simulations, we se
Ui(tn)5U j (tn)5u so that the background spike probabili
Pi

U(tn)5Pj
U(tn)50.5. With no other inputs or adaptiv

mechanisms in the model neurons, our loop-expansion fi
point will also bep̂i5 p̂ j50.5. We choose this value for ou
comparisons because each term of the loop expansio
weighted by a factor that is a power ofp̂i(12 p̂i); a factor
that is maximum forp̂i50.5. Thus, other values forPi

U(tn)
andp̂i would allow the series to converge faster and impro
the prediction of the loop expansion.
03191
.
o-

-

n,
d-
-

e-
re
f
.

th
d
f
dy

-
n

d

is

e

No time-dependent inputs were present in the simulati
thus we compared the time average and variance of the s
probability over the sampling time to the prediction of th
loop expansion. In the model neurons, recurrent spikes w
generated by selecting pseudorandom numbers from a
form distribution with a spike probability calculated by th
spike-response model@Eq. ~1!# to simulate spike generatio
by a Poisson point process. This spike generation met
allows us to compare the loop-expansion results to sim
tions up to the order of variance of a uniform distributio
The sample time wasN523106 time steps. The spike prob
ability calculated at each time step was averaged over
sample time

P̄i5
1

N (
n51

N

Pi~ tn!, ~10!

with the variance calculated by

var~Pi !5A1

N (
n51

N

~ P̄i2Pi~ tn!!2. ~11!

In this figure, the variance is shown with error bars.
Figure 2 shows the effect of synaptic strength on the t

oretical spike probability, where we set the noise parame
to m50.002. The prediction for the first 12 terms of the loo
expansion is indistinguishable from the simulation forwP
@2900,600#. It is important to note that for the excitator
synaptic weights, the lower-order expansions are better
dictors of the spike probability forw.500. Since the prod-
uct m p̂(12 p̂)51/2000, the loop-expansion diverges forw
.um p̂(12 p̂)u2152000.

The observed deviation of the loop-expansion resu
from the simulation is in a smaller range of the synap
weights than would be predicted from the radius of conv
gence of the loop expansion. The reason for this discrepa
is that there is coupling of higher-order moments of t
spike-probability distribution that were truncated in Eq.~5!.
By adopting a linear approximation of the spike-probabil
function @Eq. ~1!#, we have lost information about when th
higher moments of the distribution become large, as in
0-4
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FIG. 4. Comparison of corelation functions with numerical simulation results. The correlation functions from the simulation
computed by Eq.~19! and average over 10 trials~solid line, error bars represent 1 standard deviation!. The loop-expansion prediction~dashed
lines! for a six-term expansion~dashed lines! matches the simulation when the synaptic strengthw was within the valid range found in Fig
2. The recurrent synaptic contact in the simulation had a one-step time delay as is evident in the joint-correlation functionsCi j . The
parameters are the same as those used in Fig. 2.
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case w,2900. The linear approximation of the spike
probability function also truncates information about t
saturation of the spike probability forw.500. On the other
hand, in the region of synaptic weight values where the lo
expansion is valid, the spike probabilityPi(tn), is in the
range@0.3,0.8#, which demonstrates a significant effect
the recurrent connectivity.

We also compared the dependency of the spike proba
ity on the noise of the system with numerical simulations
the case where the recurrent synaptic weights were setw
52500. We found that the variance of the spike-probabi
covers the prediction for much of the range of noise valu
The time average of the spike-probability function is n
strongly influenced by the noise parameter, and the lo
expansion prediction forK terms of the expansion@Eq. ~9!#
matches the simulation when the noise is high (1/m.300).
The deviation of the prediction becomes prominent wh
the loop-expansion diverges, the noise is low. For much
the parameter range, the higher-order terms of the expan
do not greatly improve the prediction of spike probabili
This lack of improvement in greater predictive accuracy
the high noise is the basis of the mean-field approxima
@13#, where only the first two terms of the loop expansion a
used.

C. Stimulation effects

We can calculate the effects of surrounding neurons
the response of a single neuron to a current injection
using our expression for the membrane potential of
model neuron. This type of calculation would be useful
quantifying the functional strength of synaptic connections
a neuron embedded in a network when the neuron can
be examined with single cell recordings. If the number
synaptic connections can be estimated using morpholog
studies, and the noise and baseline activity measured
single cell recording, then the effects of neighboring neur
on the response of the recorded neuron to a step stimulus
be used to fit the recurrent synaptic strength.

In the simple case of two synaptically coupled neuro
we can represent a constant current injection into one ne
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using the following background membrane potentials@from
Eq. ~6!#:

Ui~ tn!5H V̂1Uo for tn during the stimulus

V̂ otherwise,

U j~ tn!5V̂ for all tn . ~12!

This definition for the background potential alters the lo
expansion of the membrane potential@Eq. ~7!#. Since
Ui(tn)2V̂5Uo andU j (tn)2V̂50, we have

^Vi~ tn!&5V̂1Uo1wp̂(
K51

`

„wm p̂~12 p̂!…K21@11m~1

2 p̂! 1
2 „11~21!K

…Uo#, ~13!

where we have assumed that the stimulus time is lo
enough to integrate out the EPSP kernel.

Comparisons with numerical simulation are shown in F
3. As in previous simulations, we calculated the membra
potential Vi(tn) and calculated spiking of the neuron pa
using spike response models. In the simulation, one of
coupled neurons was stimulated step increase of its bas
membrane potential by 20% so thatUo50.2V̂. The stimulus
was presented everyM 5 200 time steps and lasted forL 5
20 time steps for a total sample time ofN523105 time
steps. The membrane potential was time averaged during
stimulation presentations,

V̄i5
M

NL (
m11

N/M

(
l 51

L

V~ tmM1 l !, ~14!

and the variance was calculated by

var~Vi !5AM

NL (
m11

N/M

(
l 51

L

@V̄i2V~ tmM1 l !#
2. ~15!
0-5
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PATRICK D. ROBERTS PHYSICAL REVIEW E69, 031910 ~2004!
The result shows that the loop expansion can predict
response of a neuron embedded in a network with a br
range of synaptic strengths. In these expressions, the re
could be generalized to the case wherewi j Þwji if we re-
cover a sum over the synaptic weights and alter the exp
sions appropriately.

In the example presented here, we assumed that the st
lation time was long compared to the EPSP so that we i
grated out the temporal dependencies for simplicity. Ho
ever, the change in spike rate caused by the stimula
would provide a transient correlation that persist for the
ration of e (K)(tn) @27,28#. This would suggest a mechanis
for persistent currents leading to possible memory effect

D. Correlation functions

We can apply our diagrammatic method directly to t
problem of calculating correlation functions in a network
coupled neurons. For a pair of neurons, we refer to the lo
expansion diagram~Fig. 1!, along with the diagrammatic
rules, and choose those terms that represent the type of
relation that we wish to calculate. For an autocorrelat
function, we use only the even power terms that represen
effect of a neuron on itself through the other neuron in
network, and for a joint-correlation function, we use only t
odd power terms that give the influence of one neuron on
other.

1. Parameter dependency of correlation functions

We wish to calculate the spike correlation function@29#,

Ci j ~sn!5^„^Si~ tn!&2Si~ tn!…„^Sj~ tn1sn!&2Sj~ tn1sn!…&.
~16!

In our example, we have let the background membrane
tential be a constant so that^Si(tn)&5 p̂. To obtain an ex-
pression for the autocorrelation function (j 5 i ), we multiply
the even terms of the loop expansion~Fig. 1! by an overall
factor of p̂ that arises from the product of spike probabilitie

Cii ~ tn!5 p̂2 (
K51

`

„wm p̂~12 p̂!…2Ke (2K)~ tn!. ~17!

The terms of the loop expansion represent the effect of n
ron i on itself via propagationK times around the loop. If the
background membrane potential were not constant, t
there would have been terms in Eq.~17! that result from the
temporal correlations ofUi(tn).

FIG. 5. Recurrent network model. Spike response neurons
coupled by recurrent synaptic connections with weightw. The spike
probabilityP(tn) of each model neuron is a function of the synap
connections, a background inputU(tn), and internal noisem.
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The joint-correlation function is found by multiplying th
odd terms of the loop expansion by the average spike p
ability,

Ci j ~ tn!5 p̂2 (
K51

`

„wm p̂~12 p̂!…2K21e (2K21)~ tn!. ~18!

The first term in the series is the correlation as a result of
direct effect of neuronj on neuroni, the second term in the
series is the effect for the signal that has traveled o
around the loop.

2. Numerical comparison with correlation functions

In order to test our analytic expressions for the correlat
functions of two mutually connected neurons, we simulate
pair of spike-response model neurons and computed
spike correlation functions using the formula

Ci j
sim~ tn!5

1

R (
m51

N

Si~ tm!Sj~ tm1tn!2S̄i S̄j , ~19!

whereR is the number of spikes in the spike train of neur
i and S̄i is the time-averaged spike probability,S̄i

5(1/N)(n51
N Si(tn). The sample time wasN523105. In

the case of autocorrelation functions (i 5 j ), we set
Cii

sim(0)50 @30#.
A comparison is shown in Fig. 4 for the autocorrelatio

and joint-correlation functions of neurons coupled by tw
choices of synaptic weights. In Fig. 4 we compare the p
diction of the loop-expansion to the average correlation fu
tion of ten simulations. The prediction in the case of t
stronger weight is shown to deviate from the simulation d
to higher-order terms containing higher-order convolutio
of the EPSP function,e (K)(tn).

E. Comparison with the high-temperature expansion

A similar method of deriving analytic expressions for co
lective variables in statistical systems was developed tha
valid under conditions of high temperatures@31–33#. Such
an expansion takes advantage of the noise parameter in
spike probability function@Eq. ~1!#. This function is equiva-
lent to the distribution function of fermionic systems whe
the parameterm is proportional to the inverse temperature
the system. Expanding Eq.~1! nearm50 yields

Pi~ tn!5
1

2
1

1

4
m„Vi~ tn!2u i…2

1

8
m3

„Vi~ tn!2u i…
3

1
1

4
m5

„Vi~ tn!2u i…
51•••. ~20!

As in our earlier loop expansion near a fixed point ofPi(tn),
we substitute in the explicit expression forVi(tn) which con-
tains a factor representing the spike probability of the n
rons connected to neuroni. The spike probability functions
for the coupled neurons are also expanded, and the lin
terms are collected so that we arrive at an expression for
spike probability of neuroni. This expansion is the sum of it

re
0-6
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RECURRENT BIOLOGICAL NEURAL NETWORKS: THE . . . PHYSICAL REVIEW E 69, 031910 ~2004!
spike probability in the absence of synaptic connections p
a series of perturbations due to recurrent connections,

Pi~ tn!5Pi
U~ tn!1 (

K51
~ 1

4 mw!Ke (K)* Pa
U~ tn!, ~21!

wherea50 if K is even, anda51 if K is odd. The expres-
sion obtained from the high-temperature expansion is th
fore equivalent to the fixed-point loop-expansion for the s

FIG. 6. Loop diagrams for theK55 term in the correlation
function, Ci j (tn), of a periodic chain of neurons. There are fi
synaptic links with two loops. The computation is symmetric und
the transposition ofi and j.
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cial case when the fixed-pointp̂51/2. Thus, the fixed point
loop expansion can be thought of as a high-temperature
pansion with a bias and with a temporal structure in
interaction kernels.

Although the fixed-point loop expansion was develop
for biological systems that possess homeostatic adapta
mechanisms, there are advantages to this connection with
high-temperature expansion. First, for more complicated n
works, the diagrams that weight the terms of the perturba
expansion have already been enumerated in the litera
@34#. Second, the connection may be made with other te
niques from statistical mechanics@35# to calculate properties
of neural networks that could be used to test models of b
logical neural systems.

III. NETWORKS WITH MULTIPLE NEURONS

A. Effective spike propagation diminishing efficacy
and equivalent networks

The propagation of spikes across multiple neurons i
neural network can be estimated by the loop expansion of
correlation function for a periodic chain of neurons@6#,
where each neuron is recurrently coupled to its nea
neighbors and the first neuron is coupled to the last. W
more than two neurons are on a network, the number of l
diagrams that contribute to each term of the loop expans
must be enumerated.

Consider the joint-correlation function between a neig
boring pair of neurons in the network depicted in Fig. 5. T
terms of the correlation function@Eq. ~18!# must by weighted
by the number of distinct loop diagrams,AK

l that can be
constructed with (K2 l )/2 loops, wherel is the number of
synaptic links that separate the neurons (j 5 i 6 l ). Then we
have

Ci j ~ tn!5 p̂2 (
K51

`

AK
l
„wm p̂~12 p̂!…2K21e (2K21)~ tn!.

~22!

For nearest neighbors (j 5 i 11), the coefficients areA1
1

51, A3
153, A5

158. The distinct loops contributing toA5 are
shown in Fig. 6.

r

than two
ults for

e as those
FIG. 7. Diminishing efficacy and equivalent networks. The joint-correlation function of neuron pairs that are separated by more
synaptic connections are indistinguishable from noise. A comparison of joint-correlation functions with numerical simulation res
Ci ,i 11 andCi ,i 12 demonstrate that the loop-expansion generalizes to networks of multiple neurons. The parameters are the sam
used in Fig. 2 with the synaptic weights set atw52500.
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PATRICK D. ROBERTS PHYSICAL REVIEW E69, 031910 ~2004!
We compared the prediction of the loop-expansion for
joint-correlation function with a simulated periodic cha
network of ten neurons~Fig. 7!. The model parameters wer
the same as used to generate Fig. 2, with the syna
weights set atw52500. We averaged over ten simulatio
and the number of time steps in each simulation wasN52
3105. The results are shown in Fig. 6 where the join
correlation function was computed in the simulation for fi
different locations. The loop expansion was computed for
nearest neighbor (j 5 i 11), and the neuron two steps awa
( j 5 i 12). The joint-correlation function of the neuron pa
that are separated by two synaptic links (j 5 i 12) has coef-
ficients A2

251, A4
254, A6

2512. The joint-correlation func-
tions for neuron pairs separated by more than two syna
links were indistinguishable from the noise.

The result that neurons located further than two st
away had a vanishing correlation function suggests a ra
diminishing efficacy of one neuron’s synaptic action on oth
neurons in the network. This diminishing efficacy is in
parameter range where network recurrence reduces the
probability of each neuron by 20%~see Fig. 2!. The signals
that may begin with one of the neurons do not propagate
even though the local connectivity has a strong effect
each individual neuron.

Since the correlation function is indistinguishable fro
zero after three synaptic links, we could have derived id
tical results with a periodic chain network of only five ne
rons. Thus large networks may be simulated by sma
equivalent networks to yield the same results for neuron
tivity variables such as spike probability and correlati
functions.

B. Continuum limit of spatial components

In large biological neural networks, identifying and an
lyzing the multiple connections between a large number
neurons can be cumbersome. A mean-field approach
been developed@15,36# to deal with large populations o
interacting neurons where the neural populations are re
sented by a continuous field. In our notation, the spi
probability function will be generalized to include spati
components,P(x,tn), wherexPRn and 1<n<3. The spike
probability at each point in the network has the same dep
dence on the generalized membrane potential,V(x,tn), as in
the discrete neuron case@Eq. ~1!#, but now the neurons ar
labeled by their spatial location,x.

Synaptic interactions are introduced by extending the s
aptic weights to a synaptic density,w(x), so Eq.~3! becomes

^V~x,tn!&5U~x,tn!1E dx8(
m

w~x2x8!

3e~ tm2tn!P~x8,tm!. ~23!

We can combine the synaptic density with the PSP kerne
define an effective PSP kernel that depends on both s
and time,W(x,tn)5w(x)e(tn). Repeating our calculation
from the discrete case~Sec. II! we arrive at the loop expan
sion for the spike probability of a continuous neural netwo
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P~x,tn!5 (
K50

`

„m p̂~12 p̂!…KW(K)* PU~x,tn!, ~24!

where the convolution is now defined over spatial as well
temporal variables,

W(K)* f ~x,tn!5E dx1(
i 1

•••E dxK(
i K

w~xK21

2xK!e~ t i K21
2t i K

!•••w~x2x1!

3e~ tn2t i 1
! f ~x,t i 1

!, ~25!

where alln components ofx are integrated.
The loop corrections to any mean-field model of a lar

neural network can now be computed for the case wh
each location in the network is driven by a different input
represented by the background spike probability,PU(x,tn).
Although we have only included one type of neuron in t
above calculations, we may further generalize the PSP ke
to couple different types of neurons, as we will demonstr
in the following section.

IV. APPLICATIONS TO BIOLOGICAL NETWORKS

An important application of the techniques presented h
is to biological neural networks found in laminar structur
with lateral synaptic connectivity such as the mammal
cerebral cortex and the cerebellum. In the cerebral cor
pyramidal cells are coupled with lateral excitatory synaps
In addition, there are inhibitory interneurons that are exci
by, and inhibit, pyramidal cells. Interacting pools of excit
tory and inhibitory neurons have been modeled using me
field approaches@37# and have been used to study instab
ties under pathological conditions in the visual cortex@38#.
We will extend these previous results because we include
time dependence in the synaptic kernel function and we
perturbative corrections due to recurrence.

The synaptic densities of the two neural populations
modeled with a Gaussian function@38#,

wa~x!5
wa

saAp
e2(x/sa)2

, ~26!

where a denotes whether the synapses are excitatorya
5E) or inhibitory (a5I ), wa scales the synaptic strength
and sa is the lateral extent of the synaptic coupling. In th
two-dimensional cerebral cortex,xPR2 andx25x•x.

The effect of excitatory pyramidal cells on other pyram
dal cells is both excitatory and via interneurons, so we m
eliminate explicit reference to the inhibitory population b
incorporating the inhibitory interneurons into the definitio
of the excitatory synaptic density,

W~x,tn!5WE~x,tn!2WI~x,tn!. ~27!

where the first term represents the excitatory componen
the synaptic density and the second term represents th
hibitory component. The time dependency of the inhibito
0-8
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RECURRENT BIOLOGICAL NEURAL NETWORKS: THE . . . PHYSICAL REVIEW E 69, 031910 ~2004!
FIG. 8. Comparison of three forms of spike probability functions. The solid trace is the function defined in Eq.~1!, the dotted trace is the
function defined in Eq.~A3!, the dashed trace is the function defined in Eq.~A4!. The noise parameterss50.5,m54s/Ap, andb5m/ln~4!,
and the threshold,u50. The differences between these models are within the variability of the simulations compared with the loop ex
in previous figures.
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PSP kernel can be approximated by convolving two PSP
nels because the pyramidal cells inhibit other pyramidal c
through two synaptic links. Thus, the form of the synap
density becomes

W~x,tn!5wE~x!e~ tn!2wI~x!e (2)~ tn!. ~28!

Using this expression for the synaptic density, we may co
pute the loop expansion for the spike-probability functi
@Eq. ~24!#,

P~x,tn!5 (
K50

`

~m p̂~12 p̂!!K(
l 50

K

~21!K2 l S K

l D
3~wE

( l )* wI
(K2 l )* !e (2K2 l )* PU~x,tn!. ~29!

Since each convolution of Gaussian functions increases
standard deviation, each higher-order term of the loop
tends the reach of the synaptic densities. Thus, asK increases
in the loop expansion, each term predicts the distance ac
the cortex that neurons contribute to the spike probability
a given neuron. This expression for the spike-probabi
function could be improved by including more details abo
the inhibitory interneurons, such as by taking care to inclu
an independent fixed-point spike probabilityp̂ for each neu-
ronal type.

The validity of the loop expansion depends on whet
the dynamical solution is stable in both the time and sp
domain for physiological parameter settings of the syna
weights and noise parameter. Previous studies of cortical
namics have suggested that spatial instabilities are the r
of a pathological state of the system@38#. We may therefore
assume that, under normal physiological conditions, the l
expansion provides a valid, analytic expression for the ne
dynamics of the cerebral cortex.

A possible use of this calculation would be to calcula
the activity of pyramidal cells in the primary visual corte
that are driven by sensory information from the lateral g
iculate nucleus@39#, represented byPU(x,tn). The predic-
tion of Eq. ~29! combines the visual input with the later
connections within the primary visual cortex. Discrepanc
between the predicted spike activity and spike activity m
sured in experiments would suggest the influence of fe
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back recurrence from other regions of the visual cortex@2#.
Therefore, the loop-expansion technique could be a theo
ical tool to study the consequences of synaptic commun
tion between cortical regions.

A computation could also be made to predict the sp
correlation between neurons as a function of their separat
Since this analytic technique provides the parameter dep
dencies of correlation functions, it is possible to deduce
effective synaptic coupling between neurons using data
measures the lateral spread of pyramidal cell axons and
recordings to measure the space dependent correlation f
tions. These calculations would reveal what dynamical s
of the cortex~coherent or asynchronous! was present unde
physiological conditions, but such calculations are beyo
the scope of the present study.

Another application to biological networks is to predi
neural dynamics in the presence of recurrent feedback lo
as found in the mammalian thalamic-cortical system and
cerebellum. In the cerebellum, the mossy fiber input to
system is controlled by recurrent inhibition from inhibitor
interneurons that appear to control the processing of in
mation carried by mossy fibers. If the recurrent inhibitio
plays a modulatory role that can be modeled as a pertu
tion of the system, then this technique could be valuable
investigate the effects on sensory processing in the gra
cell layer of the cerebellum@40#.

A class of biological neural networks that falls outside t
validity of the loop expansion as presented here is the pat
generators such as those found in invertebrate motor sys
and the spinal chord. Since these neural systems operate
bursting, coherent state, the perturbation expansion woul
a poor predictor of the neural dynamics. Techniques fr
dynamical systems would be more appropriate for the st
of these systems.

Since the loop-expansion technique is valid when the
currence plays a modulatory role in a weak and noisy s
tem, the method may be generalized to analyze modula
biochemical networks. The localized chemical concent
tions could be represented by neurons and the kinetics o
biochemistry represented by PSP kernels. The results c
predict dynamics of complex biochemical networks whe
many components interact.
0-9



t
it

Th
ne
u

at
s
w
ch
rk
sy
o
d
ou

s
th

64
N
he
uc
ic

is
e
e
p
o
a
t

po

tic

n
in-
-

ion,
,

ptic
ion

tly
ut,

ld
he

n
l

rate
n

al
il-

at

is
d

PATRICK D. ROBERTS PHYSICAL REVIEW E69, 031910 ~2004!
In summary, we have introduced an analytic method
compute dynamical variables that predict the spiking activ
of neurons embedded in recurrent neural networks.
method relies on an expansion of recurrent synaptic con
tions and is valid for neural networks in the asynchrono
state where there are no global instabilities. A diagramm
method has been introduced to help construct the term
the loop-expansion, and the results have been compared
simulations of spiking neurons. The loop expansion te
nique is designed to be applied to biological neural netwo
of spiking neurons, and includes the temporal aspects of
aptic transmission and spike generation. Finally, we dem
strated how the loop-expansion technique can be applie
neural dynamics in the cerebral cortex to extend previ
modeling studies.
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APPENDIX: SPIKE PROBABILITY FUNCTIONS

In order to develop a mechanistic understanding of no
in our threshold model of a neuron, we will compare thr
models on neuronal variability. The objective of our mod
presented in Sec. I A is to separate the correlated syna
inputs from uncorrelated noise. The uncorrelated noise c
sists of random excitatory and inhibitory synaptic inputs,
well as channel noise. These inputs are uncorrelated with
inputs described by the functionVi(tn) in Eq. ~1!. The model
neuron described by Eq.~1! is an approximation of the
Gaussian limit of the Stein model@41,42# that is developed
from a stochastic differential equation for the membrane
tential v(t),

d

dt
v~ t !52

v~ t !

t
1j~ t !, ~A1!

wheret is the membrane time constant andj(t) represents
uncorrelated Gaussian noise with zero mean:^j(t)&50 and
^j(t)j(t8)&5s2d(t2t8). In Stein’s model,j(t) represents
inputs from balanced excitatory and inhibitory synap
noise.
tl.
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In the diffusion limit of many small synaptic inputs, it ca
be shown@43# that Stein’s model approximates an Ornste
Uhlenbeck process@44# with a stationary membrane poten
tial that takes the form of a Gaussian function,

F~v,s!5
1

sAp
expF2S v2V

s D 2G , ~A2!

where V is the stationary mean ofv(t). A neuron with a
membrane potential described by this Gaussian distribut
and a spike threshold ofu, has the spike probability function

PGauss~V,u!5E
u

`

F~v,s! dv. ~A3!

To compare this spike probability function with Eq.~1!, we
equate the slope ofPGauss(V,u) with the slope ofPi(Vi) at
Vi5u to arrive atm54s/Ap. A comparison of the func-
tional form of Eq.~A3! and Eq.~1! is shown in Fig. 8. In our
treatment, we embed the effects of uncorrelated syna
noise as background noise into the spike-probability funct
@Eq. ~1!#. The source of noise parametrized bym is uncorre-
lated with the synaptic input from other neurons explici
represented in the network and with the background inp
^j(t)Ui(t8)&50. Improvements to this approximation cou
include more details of how synaptic dynamics affect t
characteristics of the noise@45#.

It is instructive to compare the spike probability functio
developed by Gerstner@14,15#, because Gerstner’s mode
has an explicit expression for the instantaneous spike-
function, r(V), based on an Arrhenius hazard functio
@46#.Our spike probability function given by Eq.~1! esti-
mates the probability of a spike in the intervalnt. The sig-
moid threshold function is similar to Gerstner’s interv
spike probability function found by integrating the probab
ity of surviving without a spike, exp(2tr(V)), over a time
interval. The instantaneous spike rate isr(V)5r 0exp@b(V
2u)#, whereb is the noise parameter andr 0 is the spike rate
at threshold. Integrating exp„2tr(V)… over the intervalnt
yields the spike-probability function@47#

PGerstner~V,u!512exp†2r 0nt exp@b~V2u!#‡. ~A4!

Equating this function with our spike-probability functions
V5u ~assuming nt51 ms! allows us to computer 0
5 ln(2). If we expandPGerstner(V,u) about V5u, we find
that the relationship between the noise functions
m5ln~4!b. Gerstner’s spike probability function is compare
with the other two probability functions in Fig. 8.
-
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