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Recurrent biological neural networks: The weak and noisy limit
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A perturbative method is developed for calculating the effects of recurrent synaptic interactions between
neurons embedded in a network. A series expansion is constructed that converges for networks with noisy
membrane potential and weak synaptic connectivity. The terms of the series can be interpreted as loops of
interactions between neurons, so the technique is called a loop expansion. A diagrammatic method is intro-
duced that allows for construction of analytic expressions for the parameter dependencies of the spike-
probability function and correlation functions. An analytic expression is obtained to predict the effect of the
surrounding network on a neuron during an intracellular current injection. The analytic results are compared
with simulations to test the range of their validity and significant effects of the the recurrent connections in
network are accurately predicted by the loop expansion.
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[. INTRODUCTION firing once they are released from inhibition, then the neu-
ronal pair will oscillate. The coherent mode is quantified by
Recurrent connectivity is a ubiquitous feature of biologi- the correlation function that is nearly 1, for synaptic cou-
cal neural networks, particularly in the central nervous sysplings that are either excitatoryH1) or inhibitory (—1).
tem of vertebrates. This recurrent structure has made math- The present article investigates the effects of recurrence in
ematical analysis difficult because of the nonlinearities thathe asynchronous state when the joint-correlation between
arise when the action of a particular neuron affects itseliheurons is small but does not vanish. We quantify the para-
through its action on neighboring neurofd. In addition, metric dependence of neural-response variables in the asyn-
interpretation of electrophysiological data can be misleadinghronous state on the synaptic strength, the spike probability,
because the activity of neighboring neurons to the recordingnd the presence of noise in the system. We also show that
site are typically affected by the experimental stimulusthe influence of neurons on their neighbor can be consider-
[2-5]. able in the asynchronous state, suggesting that such correc-
Mathematical methods that can quantify the effects oftions should be included in our predictions about the results
neighboring neurons on the response of a single neuron enaf physiological experiments, even when no coherent state
bedded in a network would greatly improve the predictionsdynamics are obvious.
of neural network models and ease the comparison with Another interesting result found in this analysis is that,
system-level electrophysiological recordings. The developunder physiological conditions found in the vertebrate cen-
ment of theoretical methodology has led to the study of idetral nervous system, the effects of recurrent connectivity
alized systems such as syn-fire chajB$, networks with  propagates across few synaptic contacts. Thus, if distance is
correlated input$7,8], and large networks of identical neu- measured by the number of synaptic junctions separating
rons[9,10]. The goal of this project is to develop analytic neurons, effects of distant neurons can be safely neglected in
methods to improve quantitative tests of electrophysiologicamodels of biological neural networks. Thus, large-scale
hypotheses in order to set stricter limits on our theories okimulations of biological neural networks could be simplified
brain function. to smaller networks that produce quantitatively similar re-
Quantitative tests require mathematical methods thasults.
separate different dynamic modes and can be refined to dy- In the following two sections, we introduce our neural
namics of the particular system of interest. We shall separatmodeling methods and establish our notation. The following
the dynamical modes of recurrence irdoherentandasyn-  section investigates the effects of recurrence on the simple
chronousmodeq 11,12. The coherent mode is characterized model of a pair of neurons. We show how to calculate the
by strong synaptic connections that cause the activity of oneorrection to the spike probability and membrane potential
neuron to dramatically affect the activity of another. Thisdue to recurrent synaptic connections. The method considers
dynamical mode is essential to central pattern generators. Aecurrent connections as a perturbation to the background
simple example is the half-center oscillator, consisting of aactivity of the mean-field resu[tL3]. The terms of the per-
pair of symmetrically coupled neurons that are stronglyturbation series are weighted by powers of the synaptic
coupled by inhibitory synaptic currents. When one neurorstrength multiplied by the inverse of the noise in the system.
fires, the other neuron is silent. If each neuron expresseBhus, the perturbation expansion converges quickly for sys-
intrinsic conductances to terminate a burst, and to inducéems that are noisy and weakly coupled.
We compare the results of the perturbation expansion to
numerical simulations to test the validity of the method and
*Electronic address: robertpa@ohsu.edu quantify the limits of this approach. Other experimentally
URL: http://www.ohsu.edu/nsi/faculty/robertpa measurable quantities are also calculated: the response to a
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stimulus, the autocorrelation function, and the joint-

correlation function. Section Ill generalizes our perturbation (Vi(t)=Ui(tp) + X Wije(ty—to) Pj(ty) 3
method to systems with many neurons and shows that in the mJ

asynchronous mode, only close neighbors contribute S'gn'f'Becauser(tm)Z(S}Jre(tm»- Since the spike probability of

;ﬁgtllyt.icTr?meetfr:r(;?jlsstiCEi%rllodIizgtljsssiietmhg applications of thesFfeuronj is functionally dependent on the spike probability of
y 9 y ' neuroni, via its membrane potential, then in recurrent cir-

cuits V;(t,) will appear nonlinearly on both sides of the
A. Network of spike-response neurons equation and we must seek alternative methods to solve for

The model neurons used in this study are based on thik
spike-response mod¢l4]. The basic idea is to construct a
kernel function that describes the response of a biological B. Fixed-point behavior and time scales

neuron to spikes. The membrane time constant and other The neurons of neural systems have been found to have

intrinsic properties of neurons are contained in the responsgreferred spike rates due to adaptive mechanisms that drive
function [15]. In the following, we restrict the model to re- {hese systems to these rates and help maintain stability of the
s:pond linearly to presynaptic spikes W|th a S|mpl_e exponenyyera|l systeni19,2q . Both theoretical21—23 and experi-

tial decay represented by thgostsynaptic-potential (PSP) mental studie§19] have suggested that the establishment of
kernel (t). If t, is the time of the presynaptic spike, then 4 fixed point in the neural dynamics is on a time scale that is
e(t) =aexg —a(t—tyg)] for t=tp, otherwisee(t)=0. The  mych longer than the dynamics driven by spike responses.
parametea is used to describe the membrane time constantrhe presence of a fixed point allows one to choose a mean
and the kernel is normalized such thBé(t)dt=1. This  memprane potential to expand the probability function in Eq.

choice of kernel implies that the model is formally equiva- (1) | et p be the stable fixed point of the long time scale
lent [16] to integrate-and-fire mode[d7,18. These kernels  gynamics:

could also contain a synaptic delay, but in the examples we

will assume that the delay is negligible. Pi(t,)—pi=Pi(V,) as t,—o. (4)
Spikes are generated in each model neurby a prob-

ability function, P;(t), which is dependent on a variable By expanding the probability function about this fixed point,

called themembrane potential ¥t). The membrane poten- we can extract a linear relation to expose the membrane-

tial is the sum of all synaptic inputs. It is convenient to potential function on the right-hand side of H8)

construct our probability function in discrete time whetrg,

=nAt,'neZandAt is on the.orde.r of 1 ms. The propabﬂny pj(tn):@jJer(@j_pj?)(\/j(tn)_ij - (5)

of a spike generated in neurdmuring time steg,, is given

by a threshold function of the membrane potential, wherer is the membrane potential at the fixed point. In the

1 following, we will assume that the system is near the fixed
Pi(t,)=P;(V(ty))= — — , (D point p that is independent of time. This assumption will
1+exd — ui(Vi(ta) = 6)] simplify the analysis and, in one example, we will allow the

background inputJ;(t,) to vary in time.
whered; is the spike threshold and; parametrizes the noise  |n the following section we will pursue this expansion by
(ui~ 1/noise of neuroni. The noise arises from ion channel simplifying our network to the case with only two synapti-
fluctuations that are internal to each neuron, and from syneally coupled neurons to illustrate the method. However, the

aptic noise that arises from synaptic connections not explictechnique generalizes to networks of multiple neurons as will
itly included in the model. be shown in Sec. IlI.

A presynaptic spike evoked by another neuyamill con-
tribute to the membrane potentd|(t,)) with a PSP kernel
weighted by the synaptic weight; . In addition to synaptic
input, the membrane potential of neuriois also given a bias Letw;; € R be the weightefficacy) of a synaptic connec-

(or background inputU;(t,), which provides a spontaneous tion from neuronj onto neuroni. For our two-neuron net-
discharge rate or driving input to the neuronif S"™(t,,)  work, let Ui(t,) be the background membrane potential of
represents a spike trafr{"*(t,) =1 or 0 at each time st¢p neuroni, the membrane potential in the absence of synaptic
from neuronj, then the membrane potential of neutiois connections with neurop Here, the symbolsandj are fixed
labels for each of the two neurons so that we may easily
generalize the method to larger networks in the following
Vi(ty) =Ui(ty) + >, Wij €(th—tm) SP" (). (2)  sections. The ensemble average membrane potential of neu-
mJ roni is given by Eq(3). However, sincé®;(t,) is dependent
on the activity of neurom due to the recurrent synaptic con-
Thej sum is over all neurons that have synaptic contact ontmection, we must expand about the background membrane
neuroni. To compute the ensemble average of the membranpotential of neuron as in Eqg.(5). The membrane potential
potential, we use the probability functions of the presynaptiof neuronj is also dependent on the spike activity of neuron
neurons, i, so that we now have

Il. PAIR OF COUPLED NEURONS
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K=1 K=2 K=3 >
R S X W Y s R Pilt)= X (wup(1- )X PY(ty),  (9)

. . . . . . K=0
1 il J 1 J i J
FIG. 1. Loop expansion. Each term in the series expansion fo

two coupled neuronfEqg. (9)] is represented by a diagram of recur-
rent loops withK synaptic links.

where P;’(tn)=Pa(Ua(tn)) is the background spike prob-
Bbility of neurona, and we have defined©(t,)=5(t,).
Note that the fixed-poinp is still present in this expression.
If the expansion were taken about the background spike
R R - probability, the expression is the same unless the background
(Vi(th) =Ui(ty) + wijPpje* [ 1+ u(1—p)(Uj(tn) = V))] spike probability is not constant.
WD (1= B W €% P For a sensible prediction of the spike probability function,
AW By (1= Pj)wji €% Piltn), ® the expansion must be bounded on the intef\al]. Be-
where we have introduced the notation for the multiplecause the expansion parametesp(1—p), is dependent on
convolutions,e™*f(t,)) = =, - 3, e(ti.  —t; )---e(t the noise and synaptic weight, we must investigate the con-
: v KMk K " ditions for convergence of this series. The produatl
—til)f(til). The last term in Eq(6) represents the recurrent :

3 . ) . . —p)=<0.25 for all p, so the important parameters for con-
gffects of neuronss ggthlty on itself via neuron. Expand- vergence are the noise parameter and synaptic weight. Since
ing the spike-probability function of neuranP;(t,), gener-

, . . p is small for noisy networks, and is small for weakly
ates another term with a factor that contains the spikezqhied networks, then the perturbation series converges in
probability function of neuron.

A a0 the weak and noisy limit of these network parameters pro-
For simplicity, let pi=p;=p, ui=p;=pn, 6,=0;=0,

_ i vided thate)* PJ(t,) is bounded a& — .
and collect the terms in powers of the synaptic weight, a(tn) -
=wj;;=w, to arrive at an expression for the average mem-

brane potential A. Diagrammatic methods

® The expressions for the spike-probability function and av-
(Vi(ty))=U(t )+W@2 (Wup(1—p))K-1 erage membrane potential can become unwieldy when many
nen nn K=1 synaptic connections are involved with different weights and

K R different neuronal types. Therefore, we introduce a book-
X[1+p(1-p)e"* (Us(th)=Va)], (1) keeping device based on Feynman-like diagrams that will

where help keep track of the terms of the expansian,2g.
o ) A chain of synaptic linksis the number of synaptic con-
_Jiif K iseve g nections that a signal passes from the starting neuron to the
a= j if Kisodd]|" (8) final neuron. For instance, in our example of the pair of

coupled neurons, the second term in Fig. 1 is a chain of 1

We now have an expression that is dependent on the backynaptic link, the third term is a chain of two synaptic links.
ground activity of either neuron, that is, we may calculate theEach unique chain of synaptic links contributes a term to the
effect of the recurrent connections on any specific neuron tperturbation expansion.
an accuracy of the order @fup(1—p). For a chain oK synaptic links,

The spike probability can also be expressed as a power 1—-2—---i—j—---K—=K+1,
series by substituting the expansion of the average menthe influence of the first neuron in the chain on the spike
brane potentialEq. (7)] back into the expression for the probability of neuron K+ 1) is given by a term containing

spike probability function Eq(5), the following factors:
1.0
0‘8_ B e
%0.6_ frz K=4 Ka2 L
.
2o T
[ 147 | ‘ 1{ 1 i lk
N "‘~
e \1\K3
0.0 et | ' I ‘
~2000 -1000 0 1000 N

Synaptic weight

FIG. 2. Comparison of the loop-expansion prediction with simulation for the synaptic weight dependence of the spike probability. The
time average of the spike-probability functi¢solid line) saturates for strong synaptic weiglesror bars represent 1 standard devigtion
The loop-expansion predictididashed linesfor K terms of the expansiofEq. (9)] matches the simulation result in the presence of strong
effects on the spike probability from recurrent connections. Background input is set to the threbiphds U (t,) = 6, the noise parameter
is «=0.002, and the number of time steps for each simulatidd=2x 10°.
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FIG. 3. Comparison of the loop-expansion prediction with simulation for the synaptic weight dependence of the average membrane-

potential loop expansion during a pulsed, intracellular simulation. The time average of the membrane gstdidtliale) during a repeated

step change of the background input by 20% of the baseline membrane potentialbars represent 1 standard deviatiorhe loop-

expansion predictiofdashed linesfor K terms of the expansidieq. (9)] matches the simulation for weak synaptic weights. Parameters are

as in Fig. 2 except the number of time steps for each simulatidh=2 x 10°.

(1) wjiuip;j(1—p;) for eachsynaptic linki—j, No time-dependent inputs were present in the simulation,
(2) MO Pf(tn) thus we compared the time average and variance of the spike
where 1 is the label of the first neuron in the synaptic chainProbability over the sampling time to the prediction of the
The perturbation expansion for the average membrane pd20P €xpansion. In the model neurons, recurrent spikes were
tential is handled similarly. For a chain &f synaptic links, genera_teq by. selec;tmg psgudorandom numbers from a uni-
1—2 i imjo - K—K+1, form distribution with a spike probability calculated by the
the influence of the first neuron in the chain on the mem-SPike-response modgEq. (1)] to simulate spike generation

brane potential of neurork(+ 1) if given by a term contain- by a Poisson point process. This spik_e generation methOd
ing the following factors: allows us to compare the loop-expansion results to simula-

a T tions up to the order of variance of a uniform distribution.
1) w;; p; for eachsynaptic lin , . : ;
8 W?'(Fi'_ B.) for e;/chga:velrslé I—_:iL The sample time wall =2 X 10° time steps. The spike prob-
3) M(IK)*[l-Ii- (1-py)(Us(t,) < 3 ' ability calculated at each time step was averaged over the
€ ML= P)(Yalln) = V) 1.

) . . sample time
The resultant perturbation series, called a loop expansion, P

approximates the effects of neighboring neurons by expand- _ 1 N

ing in the order of loops. Figure 1 shows the graphical rep- Pizﬁ 2 Pi(ty), (10

resentation of the first four terms of E@). The first term is n=1

the background spike probability and the second term repPre-.ih the variance calculated by

sents the effect of the second neuron on the first if there were

no recurrent connections. The third term is then the effect of 1 N

the first neuron on itself via its effect on the second neuron. var(P,) = \/_ > (Pi—Pi(ty))2 (12)

This technique generalizes to any number of neurons with N i=1

unique synaptic weights, intrinsic noise and background ) ) )

spike probability. Analytic methods using another type of!n this figure, the variance is shown with error bars.

converging series have been developed previously to study Figure 2 shows the effect of synaptic strength on the the-

population dynamics of large networkae. oretical spike probability, where we set the noise parameter

to u=0.002. The prediction for the first 12 terms of the loop

expansion is indistinguishable from the simulation Yoe

[ —900,60Q. It is important to note that for the excitatory
We wish to check the range of validity of our loop expan- synaptic weights, the lower-order expansions are better pre-

sion of our model network by comparing the parameter degictors of the spike probability fow>500. Since the prod-

pendency of the loop expansions with a numerical simulationyct 4 p(1— p)=1/2000, the loop-expansion diverges for

of a pair of coupled neuror{g8]. In our simulations, we set  ~| 51— p)|~1=2000.

Ui(tn) =U;(ty) = 6 so that the background spike probability ~ The observed deviation of the loop-expansion results

PP(t))=P}(t,)=0.5. With no other inputs or adaptive from the simulation is in a smaller range of the synaptic

mechanisms in the model neurons, our loop-expansion fixe@eights than would be predicted from the radius of conver-

point will also bep;=p;=0.5. We choose this value for our gence of the loop expansion. The reason for this discrepancy

comparisons because each term of the loop expansion i§ that there is coupling of higher-order moments of the

weighted by a factor that is a power pf(1—p;); a factor  spike-probability distribution that were truncated in E§).

that is maximum forp;=0.5. Thus, other values fd®7(t,) By adopting a linear approximation of the spike-probability

andp; would allow the series to converge faster and improvefunction[Eg. (1)], we have lost information about when the

the prediction of the loop expansion. higher moments of the distribution become large, as in the

B. Numerical comparison
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Ciia w = —1000
Ci'iy w = =500

Correlation

Cijg w = —1000

o 5 10 15 20 25

t,, (msec)
FIG. 4. Comparison of corelation functions with numerical simulation results. The correlation functions from the simulation were

computed by Eq(19) and average over 10 trialsolid line, error bars represent 1 standard deviatidhe loop-expansion predictiddashed

lines) for a six-term expansiofdashed linesmatches the simulation when the synaptic stremgthas within the valid range found in Fig.

2. The recurrent synaptic contact in the simulation had a one-step time delay as is evident in the joint-correlation f@yctidhe

parameters are the same as those used in Fig. 2.

case w<—900. The linear approximation of the spike- using the following background membrane potentfélem

probability function also truncates information about theEq. (6)]:

saturation of the spike probability fav>500. On the other R

hand, in the region of synaptic weight values where the loop V+U, for t, during the stimulus

expansion is valid, the spike probabili®y;(t,), is in the Ui(ty)=

range[0.3,0.8, which demonstrates a significant effect of

the recurrent connectivity. .
We also compared the dependency of the spike probabil- Uj(ty)=V forall t,. (12)

ity on the noise of the system with numerical simulations for

the case where the recurrent synaptic weights were sgt at This definition for the background potential alters the loop

= —500. We found that the variance of the spike-probabilityexpansion of the membrane potentigEq. (7)]. Since

covers the prediction for much of the range of noise valuesy,(t,)—V=U, and Uj(tn)_(/zo, we have

The time average of the spike-probability function is not

strongly influenced by the noise parameter, and the loop- o

expansion prediction foK terms of the expansiofEq. (9)] (Vitt)y=V+Ug+wd >, (Wup(1—p) 1+ pu(1

matches the simulation when the noise is highu(:300). K=1

V otherwise,

The deviation of the prediction becomes prominent where a1 K

the loop-expansion diverges, the noise is low. For much of —P)z(A+(=1)HUol,
the parameter range, the higher-order terms of the expansion ) _ )
do not greatly improve the prediction of spike probability. Where we have assumed that the stimulus time is long
This lack of improvement in greater predictive accuracy inenough to integrate out the EPSP kernel. o
the high noise is the basis of the mean-field approximation Comparisons with numerical simulation are shown in Fig.

[13], where only the first two terms of the loop expansion are3- AS in previous simulations, we calculated the membrane
used. potential V,(t,) and calculated spiking of the neuron pair

using spike response models. In the simulation, one of two
C. Stimulation effects coupled neurons was stimulated step increase of its baseline

. 0 _ " .
We can calculate the effects of surrounding neurons Orr]nembrane potential by 20% so thag=0.2V. The stimulus

the response of a single neuron to a current injection by S presented eveil = 200 time steps and lasted fhr=

using our expression for the membrane potential of thc)aéo time steps for a total sample time N=2x10° time

model neuron. This type of calculation would be useful forStepS' The membrane potential was time averaged during the

quantifying the functional strength of synaptic connections tost|mulat|0n presentations,

a neuron embedded in a network when the neuron can only M L
be examined with single cell recordings. If the number of = M
: ) S oS : Vi=gr 2 2 Vit (14)
synaptic connections can be estimated using morphological "' NL #7122 mM-E1
studies, and the noise and baseline activity measured by a
single cell recording, then the effects of neighboring neurongng the variance was calculated by
on the response of the recorded neuron to a step stimulus can

(13

P

be used to fit the recurrent synaptic strength. M T
In the simple case of two synaptl_cally.coqpled neurons, varV)= \/— 2 2 [Vi—V(towe) ]2 (15
we can represent a constant current injection into one neuron NL m71 =1
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Noise (W——— e | . The joint-correlation function is found by multiplying the
O \ > \ >0 - odd terms of the loop expansion by the average spike prob-
Spike output (P(1)) tzv'rl_;'l e -:1\,"""' ability,
(—"\:‘;_u_x\u';‘."’ w ;___,l\!:‘,'/. _____
Non-adaptive input iV,, ):" J J ‘/: " - A ~ _ -
R Cij(tn) =* X Wiup(1—p))**e®< it (18)

FIG. 5. Recurrent network model. Spike response neurons are
coupled by recurrent synaptic connections with weighThe spike  The first term in the series is the correlation as a result of the
probability P(t,) of each model neuron is a function of the synaptic direct effect of neurorj on neuroni, the second term in the
connections, a background inpu{(t,), and internal noisg.. series is the effect for the signal that has traveled once

) ) around the loop.
The result shows that the loop expansion can predict the

response of a neuron embedded in a network with a broad 2. Numerical comparison with correlation functions
range of synaptic strengths. In these expressions, the results In order to test our analytic expressions for the correlation

could be generalized to the .case_whwg—;;& w;; if we re- functions of two mutually connected neurons, we simulated a
cover a sum over the synaptic weights and alter the expre%-air of spike-response model neurons and computed the
sions appropriately.

In the example presented here, we assumed that the stimlSJE)Ike correlation functions using the formula

lation time was long compared to the EPSP so that we inte- _ 1 N L
grated out the tem.poral_dependenmes for S|mpI|C|§y. Hoyv— Cisjlm(tn): 2 2 S(tm) Si(tm+t)—SS;, (19
ever, the change in spike rate caused by the stimulation m=1

would provide a transient correlation that persist for the du- . . . . .
ration of e®(t,) [27,28. This would suggest a mechanism whereR is the number of spikes in the spike train of neuron

for persistent currents leading to possible memory effects. I and S is the time-averaged spike probabilitys
=(1N)=N_,S(t,). The sample time wadl=2x1C. In
the case of autocorrelation functions=(j), we set
. . . Ci™(0)=0 [30].

We can apply our diagrammatic method directly to the ~A comparison is shown in Fig. 4 for the autocorrelation
problem of calculating correlation functions in a network of 5,4 joint-correlation functions of neurons coupled by two
coupled neurons. For a pair of neurons, we refer to the loopghpices of synaptic weights. In Fig. 4 we compare the pre-
expansion diagraniFig. 1), along with the diagrammatic gjction of the loop-expansion to the average correlation func-
rules, and choose those terms that represent the type of cq[pn of ten simulations. The prediction in the case of the
relation that we wish to calculate. For an autocorrelation,stronger weight is shown to deviate from the simulation due

function, we use only the even power terms that represent thg, higher-order terms containing higher-order convolutions
effect of a neuron on itself through the other neuron in theyf the EPSP functione®(t,,).

network, and for a joint-correlation function, we use only the
odd power terms that give the influence of one neuron on the
other.

D. Correlation functions

E. Comparison with the high-temperature expansion

A similar method of deriving analytic expressions for col-
1. Parameter dependency of correlation functions lective variables in statistical systems was developed that is
valid under conditions of high temperaturg®l—33. Such
an expansion takes advantage of the noise parameter in our
_ _ _ spike probability functiodEq. (1)]. This function is equiva-
Cij(30) = ((S (ta)) = SE)(Si(tn50)) = i(tn+Sn)))- Iepnt topthe distr?/bution funcct]ion of fermionic systemqs where
(16 the parameteq is proportional to the inverse temperature of

In our example, we have let the background membrane pdhe system. Expanding E¢l) nearu =0 yields
tential be a constant so thé&§(t,))=p. To obtain an ex-

ion for th lation function=(i itiol 1 1 1, 3
pression for the autocorrelation unptlgﬁl), we multiply Pi(t,) = > + Z,U«(Vi(tn) —6)— gh (Vi(t,) - 6))
the even terms of the loop expansi@fig. 1) by an overall
factor of p that arises from the product of spike probabilities,

We wish to calculate the spike correlation functi@9],

IOt = B 9

Cii(th)=p? 2, (Wup(1-p)*e(t,). (1
it =P Kzl (Wip(1=P)Te () @ As in our earlier loop expansion near a fixed poin®ft,),

we substitute in the explicit expression #é1(t,) which con-
The terms of the loop expansion represent the effect of neuains a factor representing the spike probability of the neu-
roni on itself via propagatiok times around the loop. If the rons connected to neuranThe spike probability functions
background membrane potential were not constant, thefor the coupled neurons are also expanded, and the linear
there would have been terms in EG7) that result from the terms are collected so that we arrive at an expression for the
temporal correlations df);(t,). spike probability of neuron This expansion is the sum of its
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cial case when the fixed-poifit=1/2. Thus, the fixed point
o "{1_._- e — . loop expansion can be thought of as a high-temperature ex-
-2 -1 1 ] pansion with a bias and with a temporal structure in the

‘-_@ interaction kernels.
¢ ¢ Although the fixed-point loop expansion was developed

for biological systems that possess homeostatic adaptation
mechanisms, there are advantages to this connection with the
d @’;".—‘ high-temperature expansion. First, for more complicated net-
works, the diagrams that weight the terms of the perturbation
expansion have already been enumerated in the literature
W-,,. — o [34]. Second, the connection may be made with other tech-
nigues from statistical mechanif35] to calculate properties
of neural networks that could be used to test models of bio-

W logical neural systems.
e —_—

I1Il. NETWORKS WITH MULTIPLE NEURONS

gj @ A. Effective spike propagation diminishing efficacy
and equivalent networks

The propagation of spikes across multiple neurons in a
@ neural network can be estimated by the loop expansion of the
correlation function for a periodic chain of neurof§],
where each neuron is recurrently coupled to its nearest
neighbors and the first neuron is coupled to the last. When
%‘ more than two neurons are on a network, the number of loop
diagrams that contribute to each term of the loop expansion
must be enumerated.
Consider the joint-correlation function between a neigh-
FIG. 6. Loop diagrams for th&=5 term in the correlation  horing pair of neurons in the network depicted in Fig. 5. The
function, C;;(t,), of a periodic chain of neurons. There are five tarms of the correlation functidiEq. (18)] must by weighted
synaptic links with two loops. The computation is symmetric underby the number of distinct loop diagramA,'& that can be
the transposition of andj. . .
constructed with K—1)/2 loops, wherd is the number of
synaptic links that separate the neurops{£1). Then we

spike probability in the absence of synaptic connections pluﬁave

a series of perturbations due to recurrent connections,

Cij(tn) = @ZK; Al (wup(1—p))2Le@r=D (g ).

Pi(t) =Pl (t) + 2 Grw)Xel*PR(ty),  (21)

K=1 (22)
wherea=0 if K is even, anca=1 if K is odd. The expres- For nearest neighborsj€i+1), the coefficients are\i
sion obtained from the high-temperature expansion is there= 1, A}=3, Ai=8. The distinct loops contributing s are
fore equivalent to the fixed-point loop-expansion for the speshown in Fig. 6.
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FIG. 7. Diminishing efficacy and equivalent networks. The joint-correlation function of neuron pairs that are separated by more than two
synaptic connections are indistinguishable from noise. A comparison of joint-correlation functions with numerical simulation results for
Cii+1 andC; ., demonstrate that the loop-expansion generalizes to networks of multiple neurons. The parameters are the same as those
used in Fig. 2 with the synaptic weights setwat —500.
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We compared the prediction of the loop-expansion for the *
joint-correlation function with a simulated periodic chain P(X,ty)= > (up(1—p)KW*pYixt),  (24)
network of ten neuronéFig. 7). The model parameters were K=0
the same as used to generate Fig. 2, with the Syr]apti\?vhere the convolution is now defined over spatial as well as
weights set atv=—500. We averaged over ten simulations . P

: . . . temporal variables,

and the number of time steps in each simulation Was2
X 10°. The results are shown in Fig. 6 where the joint-

correlation function was computed in the simulation for five WK+ f(x,tn)zf dxlz e deZ W(Xk_1
different locations. The loop expansion was computed for the "1 'K

nearest neighborjE&i+1), and the neuron two steps away —x et —t ) W(X—Xy)
(j=i+2). The joint-correlation function of the neuron pair K-1 K

that are separated by two synaptic links=( +2) has coef- X G(tn_til)f(xvtil)a (25)

ficients A3=1, A;=4, A3=12. The joint-correlation func-
tions for neuron pairs separated by more than two synaptig/here alln components ok are integrated.
links were indistinguishable from the noise. The loop corrections to any mean-field model of a large
The result that neurons located further than two stepgeural network can now be computed for the case where
away had a vanishing correlation function suggests a rapicsach location in the network is driven by a different input as
diminishing efficacy of one neuron’s synaptic action on othefrepresented by the background spike probabifty(x,t,).
neurons in the network. This diminishing efficacy is in a Although we have only included one type of neuron in the
parameter range where network recurrence reduces the spikgove calculations, we may further generalize the PSP kernel
probability of each neuron by 20%ee Fig. 2 The signals to couple different types of neurons, as we will demonstrate
that may begin with one of the neurons do not propagate fain the following section.
even though the local connectivity has a strong effect on
each individual neuron. o IV. APPLICATIONS TO BIOLOGICAL NETWORKS
Since the correlation function is indistinguishable from
zero after three synaptic links, we could have derived iden- An important application of the techniques presented here
tical results with a periodic chain network of only five neu- is to biological neural networks found in laminar structures
rons. Thus large networks may be simulated by smallewith lateral synaptic connectivity such as the mammalian
equivalent networks to yield the same results for neuron acserebral cortex and the cerebellum. In the cerebral cortex,
tivity variables such as spike probability and correlationpyramidal cells are coupled with lateral excitatory synapses.
functions. In addition, there are inhibitory interneurons that are excited
by, and inhibit, pyramidal cells. Interacting pools of excita-
tory and inhibitory neurons have been modeled using mean-
field approache$37] and have been used to study instabili-
In large biological neural networks, identifying and ana-ties under pathological conditions in the visual corf88].
lyzing the multiple connections between a large number ofNVe will extend these previous results because we include the
neurons can be cumbersome. A mean-field approach hasne dependence in the synaptic kernel function and we add
been developed15,36 to deal with large populations of perturbative corrections due to recurrence.
interacting neurons where the neural populations are repre- The synaptic densities of the two neural populations are
sented by a continuous field. In our notation, the spike-modeled with a Gaussian functi$88],
probability function will be generalized to include spatial
componentsP(x,t,), wherexe R" and 1=n=<3. The spike Wa  roy?
probability at each point in the network has the same depen- Wy(X) = —=e 7", (26)
dence on the generalized membrane potendi@t,t,), as in TaNT
the discrete neuron ca$kqg. (1)], but now the neurons are
labeled by their spatial locatiom,
Synaptic interactions are introduced by extending the syn
aptic weights to a synaptic density(x), so Eq.(3) becomes

B. Continuum limit of spatial components

where a denotes whether the synapses are excitatary (
=E) or inhibitory (a=1), w, scales the synaptic strength,
and o, is the lateral extent of the synaptic coupling. In the
two-dimensional cerebral cortexe R? andx?=x- x.

The effect of excitatory pyramidal cells on other pyrami-

(V(x,tn)>=U(x,tn)+f dx’E w(x—x") dal cells is both excitatory and via interneurons, so we may
m eliminate explicit reference to the inhibitory population by
X e(tm—t ) P(X',t) (23) incorporating the inhibitory interneurons into the definition
m n m/

of the excitatory synaptic density,

We can combine the synaptic density with the PSP kernel to W(X,t,)=Wg(X,t,) — W, (X,t,). (27
define an effective PSP kernel that depends on both space

and time,W(x,t,)=w(x)e(t,). Repeating our calculations where the first term represents the excitatory component of
from the discrete casec. 1) we arrive at the loop expan- the synaptic density and the second term represents the in-
sion for the spike probability of a continuous neural networkhibitory component. The time dependency of the inhibitory
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FIG. 8. Comparison of three forms of spike probability functions. The solid trace is the function defined(in, Eae dotted trace is the
function defined in Eq(A3), the dashed trace is the function defined in @dt). The noise parametets=0.5, u=4a/+/7, andB=pu/In(4),
and the threshold§=0. The differences between these models are within the variability of the simulations compared with the loop expansion
in previous figures.

PSP kernel can be approximated by convolving two PSP kelback recurrence from other regions of the visual cof&x
nels because the pyramidal cells inhibit other pyramidal cell§ herefore, the loop-expansion technique could be a theoret-
through two synaptic links. Thus, the form of the synapticical tool to study the consequences of synaptic communica-

density becomes tion between cortical regions.
@ A computation could also be made to predict the spike
W(X,tn) =Wg(X) €(tn) =W (X) €< (ty). (28)  correlation between neurons as a function of their separation.

) i ) ) i Since this analytic technique provides the parameter depen-
Using this expression for the synaptic density, we may COMyencies of correlation functions, it is possible to deduce the
pute the loop expansion for the spike-probability function gt ctive synaptic coupling between neurons using data that
[Eq. (24)], measures the lateral spread of pyramidal cell axons and pair

% K K recordings to measure the space dependent correlation func-
P(x,t,)= 2 (M@(l_b))KE (_1)K—I< ) tions. These calculations would reveal what dynamical state
K=0 =0 | of the cortex(coherent or asynchronguwas present under
physiological conditions, but such calculations are beyond
the scope of the present study.
. . . . . Another application to biological networks is to predict
Since each convolution of Gaussian functions increases the A
o ) neural dynamics in the presence of recurrent feedback loops,
standard deviation, each higher-order term of the loop ex- . ) . .
tends the reach of the synaptic densities. Thuk, mereases as found in the mammalian thalam|c—cort|ca! sys?em and the
in the loop expansion, each term predicts the distance acroggrebellym. In the cerebellum, thg MOossy fiber input to the
the cortex that neurons contribute to the spike probability Olsystem is controlled by recurrent inhibition from' |nh|b|tpry
a given neuron. This expression for the spike-probabilitylNnt€rneurons that appear to control the processing of infor-
function could be improved by including more details aboutMation carried by mossy fibers. If the recurrent inhibition
the inhibitory interneurons, such as by taking care to includé!ays a modulatory role that can be modeled as a perturba-
an independent ﬁxed_point Spike probab"ﬁﬁor each neu- tion of the SyStem, then this teChnique could be valuable to
ronal type. investigate the effects on sensory processing in the granule

The validity of the loop expansion depends on whethercell layer of the cerebellurfa0].
the dynamical solution is stable in both the time and space A class of biological neural networks that falls outside the
domain for physiological parameter settings of the synaptioalidity of the loop expansion as presented here is the pattern
weights and noise parameter. Previous studies of cortical dygenerators such as those found in invertebrate motor systems
namics have suggested that spatial instabilities are the reswhd the spinal chord. Since these neural systems operate in a
of a pathological state of the systd88]. We may therefore bursting, coherent state, the perturbation expansion would be
assume that, under normal physiological conditions, the looja poor predictor of the neural dynamics. Technigues from
expansion provides a valid, analytic expression for the neuralynamical systems would be more appropriate for the study
dynamics of the cerebral cortex. of these systems.

A possible use of this calculation would be to calculate Since the loop-expansion technique is valid when the re-
the activity of pyramidal cells in the primary visual cortex currence plays a modulatory role in a weak and noisy sys-
that are driven by sensory information from the lateral gentem, the method may be generalized to analyze modulatory
iculate nucleug39], represented byY(x,t,). The predic- biochemical networks. The localized chemical concentra-
tion of Eq. (290 combines the visual input with the lateral tions could be represented by neurons and the kinetics of the
connections within the primary visual cortex. Discrepanciesbiochemistry represented by PSP kernels. The results could
between the predicted spike activity and spike activity meapredict dynamics of complex biochemical networks where
sured in experiments would suggest the influence of feedmany components interact.

X (W WK =Dx) PK=DxpU(x ¢y (29)
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In summary, we have introduced an analytic method to In the diffusion limit of many small synaptic inputs, it can
compute dynamical variables that predict the spiking activitype showrn[43] that Stein’'s model approximates an Ornstein-
of neurons embedded in recurrent neural networks. Th&hlenbeck procesp44] with a stationary membrane poten-
method relies on an expansion of recurrent synaptic connedial that takes the form of a Gaussian function,
tions and is valid for neural networks in the asynchronous
state where there are no global instabilities. A diagrammatic 1 v—V\2
method has been introduced to help construct the terms of P(v,0)= _\/— ex;{—( )
the loop-expansion, and the results have been compared with 7

simulations of spiking neurons. The loop expansion techyhereV is the stationary mean af(t). A neuron with a

nique is designed to be applied to biological neural network§yemprane potential described by this Gaussian distribution,

of spiking neurons, and includes the temporal aspects of Synyq 4 spike threshold @ has the spike probability function,
aptic transmission and spike generation. Finally, we demon-

strated how the loop-expansion technique can be applied to o
neural dynamics in the cerebral cortex to extend previous Peauss(V,H):f ®(v,0o) dv. (A3)
modeling studies. 0

: (A2)

o

To compare this spike probability function with Ed.), we
ACKNOWLEDGMENTS equate the slope d?¢,,<{V,6) with the slope ofP;(V;) at

| would like to thank Alan Williams for helpful comments Vi= 0 to arrive atu=4o/\'w. A comparison of the func-
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and by the National Science Foundation under Grant NoRoise as background noise into the splk.e-prob.ablllty function
PHY99-07949. | wish to acknowledge the hospitality of the[Ed: (1)]. The source of noise parametrized fayis uncorre-
Institute for Theoretical Physics, Santa Barbara, where mucl@ted with the synaptic input from other neurons explicitly
of this work was developed during the program on dynamicgepPresented in the network and with the background input,

of neural networks. (£(t)U;(t"))=0. Improvements to this approximation could
include more details of how synaptic dynamics affect the
APPENDIX: SPIKE PROBABILITY FUNCTIONS characteristics of the noigd3].

It is instructive to compare the spike probability function

In order to develop a mechanistic understanding of noiseleveloped by Gerstndrl4,15, because Gerstner’s model
in our threshold model of a neuron, we will compare threehas an explicit expression for the instantaneous spike-rate
models on neuronal variability. The objective of our modelfunction, p(V), based on an Arrhenius hazard function
presented in Sec. | A is to separate the correlated synapt[@6].Our spike probability function given by Ed1) esti-
inputs from uncorrelated noise. The uncorrelated noise commates the probability of a spike in the intervak. The sig-
sists of random excitatory and inhibitory synaptic inputs, asmoid threshold function is similar to Gerstner’s interval
well as channel noise. These inputs are uncorrelated with thepike probability function found by integrating the probabil-
inputs described by the functidn(t,) in Eqg.(1). The model ity of surviving without a spike, expftp(V)), over a time
neuron described by Eql) is an approximation of the interval. The instantaneous spike ratepiV)=rexd sV
Gaussian limit of the Stein modg41,42 that is developed —§)], whereg is the noise parameter anglis the spike rate
from a stochastic differential equation for the membrane poat threshold. Integrating exp tp(V)) over the intervalAt
tential v (t), yields the spike-probability functiop47]

% b(t)=— @ e, (A1) Poersimef V. 0) = 1—exi—roAtexg B(V=0)]1.  (Ad)
Equating this function with our spike-probability functions at

where 7 is the membrane time constant aé) represents V=46 (assuming At=1 mg allows us to computer

uncorrelated Gaussian noise with zero mgdift))=0 and  =In(2). If we expandPgersmekV,8) aboutV=46, we find
(E()E(t"))y=0%8(t—1"). In Stein’s model £(t) represents that the relationship between the noise functions is
inputs from balanced excitatory and inhibitory synaptic u=In(4)B. Gerstner’s spike probability function is compared

noise. with the other two probability functions in Fig. 8.
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